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Abstract. It is shown that the error in setting up a (lass of finite difference 
approximations is of two kinds: a quadrature error and an interpolation error. In 
many applications the quadrature error is dominant, and it is possible to take steps 
to reduce it. In the concluding section an attempt is made to answer the question 
of how to find a finite difference formula which is best in the sense of minimising the 
work which has to be done to obtain an answer to within a specified tolerance. 

1. Introduction. This paper has two main aims: 
(i) to provide general schemes for generating difference approximations which 

make best use of available information in the sense of minimising truncation error, 
and 

(ii) to provide a criterion for comparing the utility of particular difference 
approximations. 

Consideration is restricted to finite difference approximations to ordiniary linear 
differential equations, and to difference approximations which require only values 
of the coefficients in the differential equation for their construction. Difference 
approximations are called classical if they are satisfied exactly whenever the solu- 
tion to the differential equation is a polynomial of sufficiently low degree. 

The first aim was motivated by the recent appearance of several papers in which 
Gaussian-type quadrature formulae were used to reduce the truncation error in 
finite difference approximations to special differential equations (see for example 
[1]). The author has proposed [2] a scheme for generating classical finite difference 
approximations, and the question whether Gaussian-type quadrature formulae 
could be used naturally suggested itself. The answer is developed in Sections 2, 3 
and 4. First, a slight generalisation of the author's scheme and a brief resume of the 
error analysis are given. It is shown that the error falls into two parts called the 
quadrature error and the interpolation error, and that the quadrature error is 
dominant. In Section 3 the term quadrature error is justified by deriving an explicit 
form for the appropriate quadrature. This turns out to be an integral containing a 
positive weight function. This suggests Gaussian quadrature, and its use is exempli- 
fied in Section 4. 

An interesting feature of the author's scheme is that it has a natural generalisa- 
tion which permits the construction of a range of nonclassical approximations. 
Particular examples of these have been produced before by several authors for 
example, by Hersch [4] and Rose [5] who effectively rediscovers Hersch's work. 
This generalisation is discussed in Section 5. 

In the final section a basis for comparing the utility of particular difference 
schemes is suggested. This is applied to discuss several of the difference equations 
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constructed in previous sections. The conclusion to be drawn would seem to be that 
the law of diminishing returns applies to the search for difference approximations of 
high accuracy, and that comparatively simple formulae are most useful. 

A characteristic feature of the references quoted above is that they restrict 
attention to difference approximations having the same order as the differential 
equation to which they approximate. Such approximations have proved popular in 
particular for the numerical solution of boundary-value problems. Here finite differ- 
ence approximations of this type only are considered, but this should not be thought 
of as implying any restriction on the methods used. 

2. The Scheme for Difference Approximation. In this section an outline is given 
of a technique for constructing finite-difference approximations to the differential 
equation 

dny n-1 
(2.1) L(y) ad ? L i(x) x- =f(x). 

A more detailed account can be found in [2]. The approximation is classical as it is 
found by first fitting an interpolation polynomial to y, and then finding a difference 
equation satisfied by the interpolation polynomial. 

Let S1 be the set of points x1 , X2 ... , xn+1 where xp < xq if p < q, and x+, - 

Xi = nh. The quantity h defines the scale of the difference mesh. Also let S2 be the 
set of points t1, t2 . * - * , im where S1 and S2 need not be disjoint. Let z be the inter- 
polation polynomial to y which satisfies the conditions 

(i) A(1,2, , r + 1)z = A(1,2, , r + 1)y, r = 0,1, - 1. 
(Here A(1, 2, . , p) is the divided difference operator defined on the points 

of Si whose suffices are indicated. When p = I the corresponding operator is the 
identity.) 

(ii) L (z)() =f (), i = 1, 2, ,ns + 1. 
Provided only that h is small enough, z can be found by 
(a) fitting a polynomial to zn (nQi), i = 1, 2, ... , m (regarding them as formal 

parameters) and integrating n times, 
(b) finding the constants of integration using the conditions (i), and 
(e) using the conditions (ii) to determine actual values for the formal param- 

eters z(n) ($). 
To carry out stage (e) note that for every p = 0, 1, , n - 1, and i = 1, 2, 

* , m, z( (ti) is expressible as a linear combination of the values of z on Si and 
z(n) on S2 . Let w (z) be the vector whose components are the values of z on Si, 
then the vector z(p) whose components are the values of z(p) on S2 permits a repre- 
sentation havinig the form 

(2.2) z Bp w(z) + Cp z( 

where Bp has (m) rows and (n + 1) columns, and Cp has (m) rows and (m) col- 
umns, p = 0, 1, , n - 1. Note that the components of Cp are obtained by 
integrating the interpolation polynomial for z(n) so that they are 0 (h' P) as h -* 0. 
The conditions (ii) can be written in matrix form 

n-1 

(2.3) z = -Z Ai z(1) + f 
i=O 
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where the Ai are diagonal matrices. Combining Eqs. (2.2) and (2.3) gives 

(2.4) (I + 5, A i Cs) Z(nW (E Ai Bi) w(z) + f 
i=O i=O 

and this equation determines z(n) provided h is small enough as the components of 
the Ci tend to zero as h -O 0 (noted above). 

The constants of integration appear in z only in terms of degree ? n - 1. There- 
fore 

n 

(2.5) A (1, 2, , n + 1)z = ?vi z (2) = v z 
i=1 

where the v, depend only on the points of S1 and S2 and satisfy Z=1 vi = 1/n!, 
whence 

(2.6) A(12 n + 1)z E Ai Ci { 

Eq. (2.6) is a difference equation which is satisfied exactly by the interpolation 
polynomial z. It is the desired finite-difference approximation to Eq. (2.1). 

To examine the error in Eq. (2.6) write y = t + R where t consists of the 
first ns + n + 1 terms of the Taylor series for y, and R is the remainder. Making 
use of the fact that t satisfies Eq. (2.5) it follows after some manipulation that 

A(1, 2, -,n + 1)y + vT Q + E A Ci {( Ai Bi) w(y) - f} 

(2.7) =A(1,2, -,n+ 1)R-VTR(n) -vT(I+zlAi Ci) 

rn-1 
{Z Ai(R(t) - Bi w(R) - Ci R((n))}. 

ti=O 

This equation shows that the error in using Eq. (2.6) as an approximate dif- 
ference equation is a linear combination of the errors in the Eqs. (2.2) and (2.5). 
The errors introduced by Eq. (2.2) are called the interpolation errors. In general 
they will be 0(hm+n-j), j = 0, 1, * * *, n - 1. The error introduced by Eq. (2.5) 
is called the quadrature error. The significance of this term will be made clear in 
the next section. It can be expected to be 0(hm) so that usually it will dominate 
the interpolation errors. 

It would appear that little can be done about reducing the interpolation errors, 
but the actual contribution of these terms in any actual case depends on the non- 
zero coefficients in Eq. (2.1). For example if an-1 is nonzero then the interpolation 
error contains terms 0 (hm+?), but if only ao is nonzero then the interpolation errors 
are 0 (hm+n)). A difference equation in which the error has the same order of magni- 
tude as the interpolation error will be called optimum. 

There is little scope for optimisation in the general case, and specifications of 
Si and S2, such that the quadrature error is 0 (hm+l) provided ns is even, are 
given in [2]. In this case the quadrature and interpolation errors are of the same 
order of magnitude so that these formulae are already optimum. To obtain difference 
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formulae of substantially higher accuracy it is necessary to specialise the diferential 
equation. 

3. The Quadrature Formula. In this section it is shown that the quadrature 
error is identical with the error in the numerical evaluation of an integral representa- 
tion of the divided differenee definied on the points of Si This integral representa- 
tion has the fornm 

00 

(3.1) A(1, 2, , n + 1)y = Ty (n cx 
00 

where T is defined by 
(i) T = 0, x < ri and x > x.i, 

(ii) T, T . , T' continuous on Si 
(iii) T(r) = 0 except on Si, and 
(iv) an appropriate scaling condition. 
Eq. (3.1) is readily verified. First the right-hand side obviously vanishes when 

y is a polynomial of degree < n. Second, by Green's theorem, 
X X00 n+1 

Ty (n) dt = yT(n) dx = E Xi y(xi) 

as T(n) vanishes except at the points xi where T has (possibly) discontinuous 
(n - 1)st derivative so that T(') is expressible as a linear combination of a func- 
tions with peaks on Si . 

From the conditions (i)-(iii) specifying T it follows that (for certain con- 
stants K. to be determined) 

T = K, (x - xi)'-') Xi < X < X2, 

= Ki(x - xi)'-' + K2(x-X2) n- X2 < x < X3 
n+1 

= Ki (x -X')-O, x n x+1. 

If coefficients of powers of x are equated to zero in this last equation there results 
n+1 

(3.2) ZKixi = O, r = 0, 1, ** *, n-1, 
i=l 

which shows that the Ki are proportional to the coefficients in the divided-differ- 
ence operator defined on the points of Si . Therefore 

n+1 

(3.3) Ki = / TI (xi - x,) 
8=1;8 Hij 

where y is a scale factor to be determined. 
To calculate y put y = Xn in Eq. (3.1). Then 

X2n+1 

A(,.. ,n + )xn = n! Tdx 

Xn+I Td AM .. n + )Xn 
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But, by direct calculation, 
Xn+1 n+l Xn+ 

T Tdt =,KiJ (x _-xi)n- (X 

nil1 Ki 
n 
Ey ( Xn+l Xin- Xi ) 

' 

'Y 
(-1 )nA(l 1 2, ...* n + 1)xn 

n 

whence 

(3.4) y (n 

Example. In the case n = 2, xi = -h, x2 = 0, x3 = h, 

(3.5) A(1,2,3)y = L2Y y(0) = f Ty( dx 

where 

T = (h + x)/2h2, -h _ x < 0, 

= (h-x)/2h2, 0 < x < h. 

If the interpolation polynomial z is inserted in Eq. (3.1) and the integrations 
carried out, there is obtained the result 

(3.6) A(1 2, ... ,n + 1)z = f Tz(n) dt = Z(n)(t,). co j=1 

The numbers vj are identical with those in Eq. (2.5). This follows at once be- 
cause the z(n) (Qj) can be chosen arbitrarily. Thus Eq. (2.5) can be interpreted as a 
quadrature formula for the integral in Eq. (3.1). 

The use of Gaussian quadrature with T as weight function to improve the ac- 
curacy of Eq. (2.5) now suggests itself. For this it is sufficient that T be positive, 
and this will now be demonstrated. (I am indebted to the referee for this proof.) 

Assume T < 0 for t1 < x _ t2. 

Let K = max I T 1, and y(n) = e/K, xi _ x < tl, t2 < x < xn+I, = e/K + 
-(x- t) (t2 - x), t1 < x < t2, where e and v are > 0. 

Note that y ") > 0 and continuous in [xI, xn+]. It can obviously be modified 
to be arbitrarily many times differentiable as well. For this y((n) we have by the 
standard properties of divided differences 

A(1, 2, * * ,n + 1)y = y (t)/n! 

where t is a mean value in [xl, x" +I]. 
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(3.7) ... < y (n)()/n! = fn Ty(n) dt = I + I2 TY 

where I, = {Jl + 11+1} Ty ) dt and I2 ft2 Ty ) dt. 
Now I I, I < -, and I2 < 0. Further I I2 I can be made as large as desired by 

choosing ?7 large enough. Therefore the right-hand side of (3.7) can be made nega- 
tive by suitable choice of E and -q. This is a contradiction so that T ? 0 in [xi, 
Xn +11 . 

The decision to use Gaussian quadrature fixes the points of S2 as the zeros of the 
orthogonal polynomial of degree m with respect to T as weight function. The 
corresponding quadrature formula will be exact for polynomials of degree 2m - 1 
(i.e., whenever y is a polynomial of degree 2m + n - 1) so that the error in the 
optimised form of (2.5) will be 0 (h2m) as T = 0 (h-') and the range of integration 
is 0 (h). The error in the optimised quadrature formula is (for m > 1) smaller than 
the interpolation error. 

4. Some Examples. In all but very special cases the construction of difference 
approximations rapidly becomes extremely tedious as the order of the differential 
equations increases, and for this reason the examples considered in this section refer 
to the equation 

(4.1) d2y/dx2 + f (x)y = g(x). 

Let Si consist of the points xi = -hi, x2 = 0, X3 = h2, then 

T = (x + hi)/hl(hi + h2), -hi ? x < 0, 
(4.2) 

= (h2-x)/h2(h, + h2), 0 < x < h2, 

and 
fh2 1r+~1 + (~)rh1r+1 

(4.3) hl TX' dx = (r + 1)(r + 2) h2 + hi 

Even in the case s = 1, the problem of computing the quadrature points for 
the weight function T requires the solution of three nonlinear equations in three 
unknowns. This presents little difficulty on a computer, but does not make for ease 
of presentation. However the most important special case (where hi = h2 = h) is 
readily soluble. The quadrature points will be the zeros of a cubic polynomial 
P = X3 + Ax2 + Bx + C where P must satisfy the orthogonality conditions 

L TPdx = 0 = Ah2/6 + C, 
h 

h L:TPx dlx = 0 =h 2/15 + B/6, 

h 

I TPx2 dx = 0 = Ah2/15 + C/6, 
h 

so that 

(4.4) A = C = O, B = -2h2/5 and P = x(x2 -2h2/5). 
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Thus the points of S2 are - =-h (2 ) 1/2 0 2. The quadrature weights 
are vi = V3 = 5/48, V2 = 7/24. 

The difference equation can now be derived using the method of Section 2. 
However, in this case, it is easy to write down an interpolation polynomial which 
has an error 0 (h5) as the values of y(21 are given on Si by the differential equation. 
Writing y (xi) = yi this interpolation polynomial is 

h 7 2 ) 
\ 

32 
4 

2 - 2 
(4.5) Q = Y2 + xh-n .4d\Y2 - Y2 + 2 Y2 +6 '24 hh Y2 

giving the diff erence equation 

A(1, 2, 3)y = (h /2)62 

(4.6) = -1/48{5f(-(2 )1"2h)Q(-(2)112h) + 14f(0)Q(0) 

+ 5f((2g)'2h)Q(( )'12h) - 5g(- ()2h) - 14g(0) - 5g 5 h) 
where the second derivatives have been evaluated from 

(4.7) y(2) (X) = -f (x)Q (x) + g (x) + 0 (h5). 

However, if Lobatto quadrature is used to reduce the quadrature error, then the 
general case s = 1 is quite tractable. The resulting difference equation has an error 
of O(h4) which is the same as that of the Numerov equation, and it may be useful 
for problems in which graded meshes are necessary. 

The use of Lobatto quadrature fixes 4i = - hi and 3 = h2, and leaves 62 free 
to be adjusted to give maximum accuracy. By the usual argument, 42 is given by 
the equation 

rh2 

(4.8) f T(x + hi)(h2 - x)(x-2) dx = 0 
hi 

which has the solution 

(4.9) = -hh2-hi 2h12 + 5h, h2 + 2h22 (4 2 5 h12 + 3hi h2 +h22 

The corresponding quadrature weights are 

1 3h24 + 6h23h, + 9h22hi2 + 6h2 h13 + h14 
12 (hi + h2)(2h23 + 8h22h, + 12h h12 + 3h13)' 

(4.10) V2 =1 (h2 2+ 3h, h2 + hi 2 )3 
(4. 10) v2 = -12 * (3h23 + 12h22h, + 8h1 h12 + 2h?3)(2h23 + 8h22hi + 12h2 h12 + 3h,3) 

1 h2 4+ 6hk3h1 + 9h22h12 + 6h2 13 + 3h1 4 

12 (hi + h2)(3h23 + 12h22hi + 8h2 h12 + 2h13) 

When hi = h2 then 42 = 0, and the quadrature weights reduce to those appro- 
priate to the Numerov formula. 

When m = 5 and the points of S1 are equispaced, then Lobatto quadrature is 
again tractable. In this case the error in the resulting quadrature formula is O(h8), 
while the interpolation error is 0(h7), so that this formula is optimal. 

Formulae for approximating to boundary conditions can be derived using 
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similar techniques to those discussed above. Assume, for example, that S1 consists 
of the points - hi , -q, and h2. Then (3.1) takes the form 

1 - ,+ 1 - (7)+ 13 
(4.11) (hi + -q)(hi + h2) Y ( + + hi)(r-h2) ("q + (h2 - r)(h2 + hi) 

= fh Ty(2) dx 
hl 

where 

T = (x + hi)/ (hi + -q) (hi + h2) -hi < x < r7, 

= (h2 - x)/(h2 - -q)(hi + h2), 77 < x < h2. 

If this equation is differentiated with respect to -q and then -q set = 0, there results 

_ _ _ _ __11 
(1) 

h2 

V 

(2) (4.12) h- + he-2 22 + - 
Y3 h (0) dx 

where 

3T/ -1 x +hi 

an 1=0 hi + h2 h12 -h1?x<O, 
_ 1 h2-x O < x < h2 
hi +h2 h22 0?x h2 

If hi = h2= h, then fitting a quadratic to the values of y(2) on Si and integrating 
leads to the familiar formula 

(4.13) Y(l) = h1P-Yy2- lh6Y (2) 

which is exact whenever y is a polynomial of degree ? 4. Again Gaussian quadra- 
ture can be used to increase accuracy. Here V changes sign, but xV is positive and 
can be used as a weight function provided x = 0 is a quadrature point. The re- 
maining quadrature points in the case h1 = h2 have the form 4a where 

h 

(4.14) Vx(x2 - 2) dx = 0 
h 

giving 4a = i (3/10)1/2h. The correspondinig quadrature weights are - 1/ (12a), 
0, 1/ (12a). The formula that results when this quadrature is used to evaluate the 
integral in Eq. (4.12) is exact whenever y is a polynomial of degree ? 6. 

5. Derivation of Some Nonclassical Foimulae. The techniques described in 
Sections 2 and 3 are based on a partitioning of the operator L of the form (writing 
d/dx = D) 

L = L1 + L2, 

L1 = D', 

n-1 

L2 = , a, (x)Dt. 
i=O 



FINITE DIFFERENCE APPROXIMATIONS 141 

The significant characteristics of the partitioning are 
(i) the orders of L and L1 are the same, 
(ii) the equation Li (y) = 0 is readily soluble, and 
(iii) a difference equation satisfied by all solutions of Li (y) = 0 is readily 

determined. 
Any other partitioning of L which has these three properties provides a possible 

basis for generating finite difference approximations to Eq. (2.1). Actually, condi- 
tion (iii) is a consequence of condition (ii) for let v1, v2, ** , vn be a fundamental 
set of solutions to the equation L1(y) = 0, then the linear dependence of any 
other solution of them over the points of SI gives 

y(xi) ... y (Xn.+) 

Vi(Xi) ... Vl (x+i) 0 

Vn (xi) ...Vn (X+ ) 

which is written here as 

(5.1) x(1, 2,* ,n + 1)y = 0. 

Note that there is no scaling associated with the operator x in contrast to A where 
the scale is fixed by convention. 

The program of Section 2 can be followed through in this case also. However, 
some technique such as variation of parameters is needed to generate the inter- 
polation to y from that to Li(y) so that it is perhaps best to go straight to the 
formula which corresponds to (3.1). This has the form 

(5.2) x(1,2, ,n + l)y = f TLi(y) dx 

where now T is characterised by the conditions 
(i) T = 0,x < xl, x _ Xn1 
(ii) T, T() ., T continuous on the points of S1, 
(iii) L1(T) = 0 except at the points of S1. 

Here Li is the differential operator adjoint to Li. 
Example 1. Consider the self-adjoint differential equation 

(5.3) (d/dx) (p dy/dx) + qy = f. 

Let v1 and v2 form a fundamental set of solutions, and assume that they satisfy the 
conditions 

VI (X1) = V2 (X3) = 0, Vi(X2) = V2(X2). 

Then a possible choice for T is 

T-v1(x), X1 X < x2, 

-V2(X), X2 X < X3 

Differentiating T in the first integration by parts gives 

dTldx =H (x - x1)H(x2 -x) dv1/dx + H (x- X2)H(x3 -x) dv2 dx 
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where H (x) is the Heaviside unit function. The second integration by parts brings 
in the a functions which give the difference equation 

p(xl) Xdvxi) y(X) -p(x v(X2) dv2(X2 )yx2 

(5.4) dP 
- 

p d(X) 
v2(xs) 

y(x3)= I' Tf dx. (x) dxy() 

Example 2. Consider the special case p = 1, q > 0, and define L1 D2 + q2 

where q2 = q (x2), then 

v1(x) sin (q2)12(x - xi) vi() 
sin (q2)1"2 (X2 - XI) 

V2(X) - sin (q2)112(X3 -X) 

sin (q2)'12(x3- X2) 

If xi is specialised to X2 -h and X3 to X2 + h then (5.4) becomes 

112)Y2 YS sin (h (q2)"12 )Za 

(5.5) y, - 2 cos (h(q2)22)y2 +2 T(q2 - q)y dx. 

This formula is given by Hersch in [4] and his derivation has been followed closely 
here. An application of this equation to an eigenvalue problem has been given in 

[3]. 
A range of difference equations can be obtained by substituting different inter- 

polations for y on the right-hand side of Eq. (5.5). If, for example, the interpolation 
polynomial given by Eq. (4.5) is used, and if the resulting integral can be evaluated 
exactly, then the interpolation error in Eq. (5.5) will be 0(h8). However the left- 
hand side of this equation tends. to h2L, (y) as h -O 0 so that the error is only O(h6) 
on a scale comparable with that used in Eq. (4.6). Gaussian quadrature with re- 
spect to T as weight function can also be used. If a three-point Gaussian formula 
is used then the quadrature error will be 0 (h8), and the error on a scale comparable 
with that used in Eq. (4.6) is again 0 (h'). 

Example 3. Let Q be the quadratic interpolation polynomial fitted to q on the 
points of S1 . In this case define L1 - D2 + Q. Explicit formulae for v1 and v2 do not 
exist in general, but they can be generated to any degree of accuracy by Taylor 
series methods. Assumiiing that T is positive on St, Gaussian quadrature can be 
used to estimate f" T (Q - q) ydx. It is again most convenient to compute y from 
(4.5), and in this case the error (again using the scale appropriate to (4.6)) is 
0(h8) as Q - q is 0(h'). 

6. Assessing the Difference Equations. In the two previous sections several 
formulae have been suggested which offer different compromises between accuracy 
and ease of constructioil. In this section an attempt is made to provide a criterion 
for selecting between them. The following assumptions are made. 

A. That a realistic bound of the form Khr can be found for the error in the 
solution to the difference equation. It is assumed that K = 0 (1) as h -O 0, and 
that r is the order of the error in the difference approximation measured in the scale 
appropriate to Eq. (4.6). 



FINITE DIFFERENCE APPROXIMATIONS 143 

B. That the number of evaluations of the coefficients in the differential equation 
is an adequate measure of the work done in obtaining an approximate solution to 
the differential equation. 

This last is really two assumptions: (i) that the work done in setting up the 
difference equation dominates the work done in solving it, and (ii) that the work 
done in setting up the difference equation is effectively the work done in evaluating 
the coefficients in the differential equation at the appropriate points. 

Note that while B is a realistic assumption for our purposes it does not general- 
ise. For example, in solving a Fredholm integral equation of the second kind by 
finite differences 0(n2) function evaluations are required in setting up the linear 
equations. The matrix of this set of equations is full, and its solution requires 0 (n3) 

multiplications. In this case it is likely that the work of solution would be dominant. 
Thus assumption B takes account of the band structure of the nmatrices produced by 
finite difference approximations to ordinary differential equations. 

If E is the permitted tolerance for the error in the solution, then h must satisfy 

(6.1) h < (E/K) lr. 

Also let J be the average number of new evaluations of coefficients required in 
computing the difference equation at each mesh point (assuming that values at the 
(i + 1 )st point are computed after those at the ith, and that common values are 
reused). Then the work necessary to integrate the differential equation from x = a 
to x = b is approximately 

(6.2) W = J(b - a)(K/E) 

To compare two methods (referred to by suffices 1 and 2) the ratio lV/ JV2 is 
appropriate. This contains the terms Kllrl and K2-l1r2 which are difficult to specify 
precisely as they are dependent on the error constants, on fairly high derivatives of 
the solutioni, and on the conditioning of the original problem and that of the differ- 
ence approximations. Howvever, these terms tend to cancel one another out, and the 
exponents 1/r1 and l/r2 tend to reduce their influence strongly. Accepting this as an 
argument for ignoring the terms in K1 and K2 largely on the basis of expediency, wve 
are led to define a relative efficiency index 

(6.3) R12 = JL1 E(1Ir2 11r) 
J2 

Example 1. Consider Eq. (5.3) Nvith p = 1. Two possible finite difference ap- 
proximations are 

(i) 62yi + h2q,y, = h2fi (standard), and 
(ii) 52yi + h2(1 + 6i32)(qiyi - f2) = 0 (Numerov). 
In (i) the truncation error is 

h4 /d4 y\ 

_2 
h 

dXy) + 0(h') 

and in (ii) it is 

240 + 0(h8). 
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Thus r, = 2 and r2 = 4. Clearly J1 = J2 = 1 so that if E = 10-6 then R12 = 101'. 

This indicates that method (i) would require about 30 times as many mesh points 
as method (ii) to give six correct decimal places. 

It is interesting that in this case at least the error constants contribute little to 
the ratio W1/W2 for (1/12)112/ (1/240)114 2e 1.1 

Example 2. Compare now the Numerov formula with the formula (4.6) and 
the Gaussian type formulae suggested in Examples 2 and 3 of Section 5. Again we 
take E = 10-6. 

(i) Numerov compared with (4.6). Here J2 = 3, r2 = 5, R12 = 3 103/10 r .7. 
(ii) Numerov compared with the Gaussian formula of Section 5, Example 2. 

Here J2 = 3, r2 = 6. However, the quadrature points and weights must also be 
evaluated (consider Eqs. (4.9) and (4.10)). Depending on the complexity of the 
coefficients, an effective J2 may be expected to range between 3 and (say) 7. 

For these extremes 

J2 = 3, R12 = 1(10)112 1, 

J2= 7, R12 = 4(10)12 .4. 

(iii) Numerov compared with the Gaussian formula of Section 5, Example 3. 
Here r2 = 8 giving R12 10 75/J2 . 

In this case the number of coefficient evaluations (3) cannot be expected to be 
a reasonable measure of the work involved in setting up the difference equation as 
there are no closed formulae for the quadrature points and weights. However, R12 
cannot be greater than the value obtained by taking J2 = 3. This value 2 2. 

From these figures it is clear that the Numerov formula is very attractive even 
when compared with the very accurate formulae based on Gaussian quadrature. 
An additional feature in its favour when solving eigenvalue problems is that the 
eigenvalue parameter would appear linearly in it if it entered the original differen- 
tial equation linearly. This is not true for any of the more accurate formulae con- 
sidered. 

THowever, note that R12 depends only on the two difference approximations and 
not at all on the differential equation to be solved. Its use must therefore be tem- 
pered by discretion. What it can do is provide a prior guide to a suitable difference 
approxinmation by considering those features which always contribute to the work 
of solution. 

Of course, if an estimate is known for the magnitudes of the appropriate deriva- 
tives of the solution of the differential equation then their contribution to the term 
Killrl/K211" can be estimated. Note also that these terms depend on the choice of 
scales for the independent and dependent variables, and that the use of R12 can only 
be appropriate if "sensible" scales are adopted. 
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